I Nefficiency of Stochastic Gradient Descent with Larger Mini - Batches ( and More Learners )
نویسندگان
چکیده
Stochastic Gradient Descent (SGD) and its variants are the most important optimization algorithms used in large scale machine learning. Mini-batch version of stochastic gradient is often used in practice for taking advantage of hardware parallelism. In this work, we analyze the effect of mini-batch size over SGD convergence for the case of general non-convex objective functions. Building on the past analyses, we justify mathematically that there can often be a large difference between the convergence guarantees provided by small and large mini-batches (given each instance processes equal number of training samples), while providing experimental evidence for the same. Going further to distributed settings, we show that an analogous effect holds with popular Asynchronous Gradient Descent (ASGD): there can be a large difference between convergence guarantees with increasing number of learners given that the cumulative number of training samples processed remains the same. Thus there is an inherent (and similar) inefficiency introduced in the convergence behavior when we attempt to take advantage of parallelism, either by increasing mini-batch size or by increase the number of learners.
منابع مشابه
Stochastic Learning on Imbalanced Data: Determinantal Point Processes for Mini-batch Diversification
We study a mini-batch diversification scheme for stochastic gradient descent (SGD). While classical SGD relies on uniformly sampling data points to form a mini-batch, we propose a non-uniform sampling scheme based on the Determinantal Point Process (DPP). The DPP relies on a similarity measure between data points and gives low probabilities to mini-batches which contain redundant data, and high...
متن کاملBalanced Mini-batch Sampling for SGD Using Determinantal Point Processes
We study a mini-batch diversification scheme for stochastic gradient descent (SGD). While classical SGD relies on uniformly sampling data points to form a mini-batch, we propose a non-uniform sampling scheme based on the Determinantal Point Process (DPP). The DPP relies on a similarity measure between data points and gives low probabilities to mini-batches which contain redundant data, and high...
متن کاملProjected Semi-Stochastic Gradient Descent Method with Mini-Batch Scheme under Weak Strong Convexity Assumption
We propose a projected semi-stochastic gradient descent method with mini-batch for improving both the theoretical complexity and practical performance of the general stochastic gradient descent method (SGD). We are able to prove linear convergence under weak strong convexity assumption. This requires no strong convexity assumption for minimizing the sum of smooth convex functions subject to a c...
متن کاملBatched Stochastic Gradient Descent with Weighted Sampling
We analyze a batched variant of Stochastic Gradient Descent (SGD) with weighted sampling distribution for smooth and non-smooth objective functions. We show that by distributing the batches computationally, a significant speedup in the convergence rate is provably possible compared to either batched sampling or weighted sampling alone. We propose several computationally efficient schemes to app...
متن کاملConjugate Directions for Stochastic Gradient Descent
The method of conjugate gradients provides a very effective way to optimize large, deterministic systems by gradient descent. In its standard form, however, it is not amenable to stochastic approximation of the gradient. Here we explore ideas from conjugate gradient in the stochastic (online) setting, using fast Hessian-gradient products to set up low-dimensional Krylov subspaces within individ...
متن کامل